Table 1. Characteristics of included trials

Trial		Participants		Interv	ention	- Outcome
Year, author	Eligible population	Adjunct treatment + exercise	Exercise	Adjunct treatment + exercise	Exercise	measures
Biophysical agents	5					
Jing et al.[1] 2024	Patients	Age (y) = 20.90 ± 2.70 F/M (%) = $22\%/78\%$	Age (y) = 21.60 ± 3.80 F/M (%) = 36%/64%	Neuromuscular electrical stimulation	Exercise (n=14)	Pain (VAS)
		BMI = NR	BMI = NR	+ exercise (n=18)		Function (AKPS)
Albornoz-Cabello P et al.[2] 2023	Patients	Age (y) = 42.30 ± 15.52 F/M (%) = $41\%/59\%$	Age (y) = 51.00 ± 10.89 F/M (%) = $62\%/38\%$	Monopolar dielectric diathermy (n=29)	Exercise (n=27)	Pain (VAS)
		$BMI = 27.10 \pm 3.98$	$BMI = 28.60 \pm 4.32$	• •		Function (AKPS)
Mv et al.[3] 2023	Patients	Age (y) = $28.80 \pm 1.00^{\#}$ F/M (%) = NR	Age (y) = $29.20 \pm 1.20^{\#}$ F/M (%) = NR	Neuromuscular electrical stimulation	Exercise (n=30)	Pain (VAS)
		BMI = $26.30 \pm 0.8^{\#}$	BMI = $26.70 \pm 0.8^{\#}$	+ exercise (n=31)		Function (AKPS)
Qayyum et al.[4] 2022	Patients	Age (y) = 27.94 ± 6.36 F/M (%) = 54%/46% BMI = NR	Age (y) = 27.45 ± 7.16 F/M (%) = $39\%/61\%$ BMI =NR	High power laser therapy + exercise (n=33)	Exercise (n=33)	Pain (VAS)
Rodrigues et al.[5] 2022	Patients	Age (y) = 21.70 ± 3.40 F/M (%) = 100%/0% BMI = NR	Age (y) = 24.10 ± 3.90 F/M (%) = 100%/0% BMI = NR	Anodal transcranial direct current stimulation + exercise (n=14)	Sham anodal transcranial direct current stimulation + exercise (n=14)	Pain (VAS)
Albornoz-Cabello et al.[6] 2020	Patients	Age (y) = 48.00 ± 15.60 F/M (%) = NR	Age (y) = 52.00 ± 10.33 F/M (%) = NR	Monopolar dielectric diathermy (n=42)	Exercise (n=42)	Pain (VAS)
		BMI = 28.30 ± 5.26	$BMI = 28.20 \pm 4.74$	• • • • • • • • • • • • • • • • • • • •		Function (AKPS)

Celik et al.[7] 2020	Patients	Age (y) = 39.10 ± 9.10 F/M (%) = 64%/36% BMI = NR	Age (y) = 41.50 ± 12.70 F/M (%) = 46%/54% BMI = NR	Neuromuscular electrical stimulation + exercise (n=14)	Exercise (n=13)	Function (AKPS)
Talbot et al.[8] 2020	Army recruits	Age (y) = 26.50 ± 6.10 F/M (%) = $24\%/76\%$ BMI = NR	Age (y) = 26.80 ± 6.60 F/M (%) = 24%/76% BMI = NR	Neuromuscular electrical stimulation + exercise (n=33)	Exercise (n=34)	Pain (VAS)
Glaviano et al.[9] 2019	Patients	Age (y) = 23.80 ± 5.60 F/M (%) =73%/27% BMI = NR	Age (y) = 23.00 ± 3.70 F/M (%) = $80\%/20\%$ BMI = NR	Patterned electrical neuromuscular stimulation + exercise (n=11)	Sham patterned electrical neuromuscular stimulation + exercise (n=10)	Pain (VAS) Function (AKPS)
Nouri et al.[10] 2019	Patients	Age (y) = 35.29 ± 3.27 F/M (%) = 70%/30% BMI = 23.52 ± 3.99	Age (y) = 31.43 ± 6.72 F/M (%) = $70\%/30\%$ BMI = 23.26 ± 2.84	Higher power laser + exercise (n=20)	Sham laser + exercise (n=20)	Pain (VAS) Function (AKPS)
Iammarrone et al.[11] 2016	Patients	Age (y) = 21.00 ± 7.00 F/M (%) = 77%/23% BMI = NR	Age (y) = 24.00 ± 8.00 F/M (%) = $71\%/29\%$ BMI = NR	Pulsed electromagnetic fields + exercise (n=13)	Exercise (n=17)	Pain (VAS)
Bily et al.[12] 2008	Patients	Age (y) = 27.00 ± 7.70 F/M (%) = 53%/47% BMI = NR	Age (y) = 23.70 ± 5.50 F/M (%) = $74\%/26\%$ BMI = NR	Electric muscle stimulation + exercise (n=19)	Exercise (n=19)	Pain (VAS) Function (AKPS)
Akarcali et al.[13] 2002	Patients	Age (y) = 41.60 ± 9.58 F/M (%) = NR BMI = NR	Age (y) = 36.30 ± 9.59 F/M (%) = NR BMI = NR	High voltage electric stimulation + exercise (n=20)	Exercise (n=20)	Pain (VAS)
Taping						
Lee et al.[14] 2023	Patients	Age (y) = 27.50 ± 5.40 F/M (%) = 75%/25%	Age (y) = 27.30 ± 7.40 F/M (%) = 84%/16%	Kinesio taping + exercise (n=20)	Exercise (n=19)	Function (AKPS)

		$BMI = 21.90 \pm 2.30$	$BMI = 22.20 \pm 1.70$			
Şahan et al.[15] 2023	Patients	Age (y) = 25.00 ± 6.23 F/M (%) = $86\%/14\%$ BMI = 24.58 ± 3.66	Age (y) = 25.23 ± 10.69 F/M (%) = 62%/38% BMI = 22.01 ± 2.59	Star taping + exercise (n=14)	Exercise (n=13)	Pain (VAS) Function
		$BMI = 24.38 \pm 3.00$	BIVII = 22.01 ± 2.39		Sham star taping + exercise (n=12)	(AKPS)
			Age (y) = 26.91 ± 9.02 F/M (%) = 58%/42% BMI = 24.12 ± 5.26			
Songur et al.[16] 2023	Patients	Age (y) = 31.60 ± 9.50 F/M (%) = $75\%/25\%$	Age (y) = 28.25 ± 7.80 F/M (%) = $75\%/25\%$	McConnell patellar taping + exercise	Exercise (n=13)	Pain (VAS)
		BMI = 23.53 ± 3.55	$BMI = 23.48 \pm 2.47$	(n=13)		Function (AKPS)
		Age (y) = 28.16 ± 8.40 F/M (%) = $83\%/17\%$ BMI = 22.75 ± 3.89		Femoral rotation taping + exercise (n=14)		
Basbug et al.[17] 2022	Sedentary patients	Age (y) = 34.10 ± 8.90 F/M (%) = $100\%/0\%$ BMI = 23.90 ± 5.10	Age (y) = 39.00 ± 6.40 F/M (%) = 100%/0% BMI = 23.90 ± 5.30	Kinesio taping + exercise (n=15)	Exercise (n=15)	Pain (VAS)
Arrebola et al.[18] 2020	Patients	Age (y) = 30.38 ± 8.40 F/M (%) = $100\%/0\%$	Age (y) = 30.31 ± 7.91 F/M (%) = $100\%/0\%$	Kinesio taping (patellar	Exercise (n=16)	Pain (NPRS)
(10) =0=0		$BMI = 24.37 \pm 2.60$	$BMI = 22.68 \pm 2.78$	medialisation) + exercise (n=13)		Function (AKPS)
		Age (y) = 27.86 ± 9.38 F/M (%) = $100\%/0\%$ BMI = 23.37 ± 3.60		Kinesio taping (lateral rotation of the femur		

				and tibia) + exercise (n=14)		
Ghourbanpour et al.[19] 2018	Patients	Age (y) = 33.85 ± 10.29 F/M (%) = NR BMI = 24.70 ± 6.76	Age (y) = 37.15 ± 12.45 F/M (%) = NR BMI = 28.90 ± 4.99	McConnell patellar taping + exercise (n=15)	Exercise (n=15)	Pain (VAS) Function (KOOS-ADL)
Günay et al.[20] 2017	Patients	Age (y) = 36.00 ± 7.95 F/M (%) = 69%/31% BMI = 25.60 ± 2.64	Age (y) = 31.00 ± 6.70 F/M (%) = 38%/62% BMI = 25.20 ± 3.90	Kinesio taping + exercise (n=16)	Exercise (n=13)	Pain (VAS) Function (AKPS)
			Age (y) = 30.80 ± 8.54 F/M (%) = $50\%/50\%$ BMI = 24.20 ± 3.30		Sham Kinesiotaping + exercise (n=14)	
Akbaş et al.[21] 2011	Patients	Age (y) = 41.00 ± 11.26 F/M (%) = $100\%/0\%$ BMI = 25.17 ± 4.80	Age (y) = 44.88 ± 7.75 F/M (%) = 100%/0% BMI = 28.64 ± 5.77	Kinesio taping + exercise (n=15)	Exercise (n=16)	Pain (VAS) Function (AKPS)
Mousavi et al.[22] 2011	Male students	Age (y) = NR F/M = 0%/100% BMI = NR	Age (y) = NR F/M = 0%/100% BMI = NR	Kinesio taping + exercise (n=10)	Exercise (n=11)	Pain (VAS)
Whittingham et al.[23] 2004	Arm recruits	Age (y) = 18.80 ± 1.30 F/M (%) = $20\%/80\%$	Age (y) = 18.70 ± 1.40 F/M (%) = $20\%/80\%$	McConnell patellar taping + exercise	Exercise (n=10)	Pain (VAS)
[20] 200		BMI = NR	BMI = NR	(n=10)		Function (FIQ)
			Age (y) = 18.60 ± 1.10 F/M (%) = 20%/80% BMI = NR		Sham taping + exercise (n=10)	

Tunay et al.[24] 2003	Patients	Age (y) = 32.65 ± 6.22 F/M (%) = NR BMI = 23.05 ± 2.67	Age (y) = 28.00 ± 8.54 F/M (%) = NR BMI = 21.69 ± 1.96	Patellar taping + exercise (n=20)	Exercise (n=20)	Pain (VAS)
Clark et al.[25] 2000	Patients	Age (y) = 26.00 ± 7.40 F/M (%) = $50\%/50\%$ BMI = 24.80 ± 5.70	Age (y) = 29.50 ± 6.20 F/M (%) = $40\%/60\%$ BMI = 24.90 ± 4.20	Taping + exercise (n=20)	Exercise (n=20)	Pain (VAS) Function (WOMAC)
Whole body vibra	ntion					(WOWAC)
Wu et al.[26] 2022	Patients	Age (y) = 27.50 ± 0.00 F/M (%) = $44\%/56\%$ BMI = 22.20 ± 0.00	Age (y) = 27.30 ± 0.00 F/M (%) = $50\%/50\%$ BMI = 21.70 ± 0.00	Whole body vibration + exercise (n=18)	Exercise (n=18)	Pain (VAS) Function
		21.11 22.20 2 0.00	21170 2 0100			(AKPS)
Rasti et al.[27] 2020	Athletes	Age (y) = 25.91 ± 5.16 F/M (%) = $0\%/100\%$ BMI = 24.01 ± 0.78	Age (y) = 24.16 ± 5.21 F/M (%) = $0\%/100\%$ BMI = 24.31 ± 0.00	Whole body vibration + exercise (n=12)	Exercise (n=12)	Pain (NRS)
Yañez-Álvarez et al.[28] 2020	Patients	Age (y) = 48.00 ± 13.00 F/M (%) = 56%/44% BMI = 27.80 ± 3.80	Age (y) = 52.00 ± 10.70 F/M (%) = $48\%/52\%$ BMI = 28.50 ± 4.70	Whole body vibration + exercise (n=25)	Exercise (n=25)	Pain (VAS) Function (AKPS)
Corum et al.[29] 2018	Patients	Age (y) = 32.70 ± 7.30 F/M (%) = $100\%/0\%$ BMI = 24.20 ± 4.20	Age (y) = 33.70 ± 7.70 F/M (%) = $100\%/0\%$ BMI = 23.50 ± 3.10	Whole body vibration + exercise (n=18)	Exercise (n=16)	Pain (VAS) Function (AKPS)
Dry needling						,
Ma et al.[30] 2020	Patients	Age (y) = 22.48 ± 2.40 F/M (%) = 48%/52%	Age (y) = 25.14 ± 6.02 F/M (%) = $56\%/44\%$	Dry needling + exercise (n=25)	Sham needling + exercise (n=23)	Pain (VAS)
		$BMI = 22.68 \pm 2.69$	BMI = 21.84 ± 3.32			Function (AKPS)

Zarei et al.[31] 2020	Athletes	Age (y) = 22.25 ± 3.25 F/M (%) = $100\%/0\%$	Age (y) = 25.65 ± 8.49 F/M (%) = 100%/0% BMI = NR	Dry needling + exercise (n=20)	Exercise (n=20)	Pain (NPRS)
		BMI = NR				Function (AKPS)
Sutlive et al.[32] 2018	Arm recruits	Age (y) = 30.30 ± 5.50 F/M (%) = $43\%/57\%$	Age (y) = 31.10 ± 5.10 F/M (%) = $33\%/67\%$	Dry needling + exercise (n=30)	Sham needling + exercise (n=30)	Pain (NPRS)
		$BMI = 26.40 \pm 4.40$	$BMI = 26.80 \pm 3.20$,	, ,	Function (AKPS)
Knee brace						
Petersen et al.[33] 2016	Patients	Age (y) = 28.00 ± 9.40 F/M (%) = $66\%/34\%$	Age (y) = 28.00 ± 8.10 F/M (%) = $79\%/21\%$	Patellar brace + exercise (n=78)	Exercise (n=78)	Pain (NAS)
		$BMI = 23.00 \pm 1.50$	$BMI = 23.00 \pm 1.30$			Function (AKPS)
Denton et al.[34] 2005	Patients	Age (y) = 33.50 ± 8.80 F/M (%) = $100\%/0\%$	Age (y) = 31.50 ± 9.80 F/M (%) = $100\%/0\%$	Knee brace + exercise (n=17)	Exercise (n=17)	Pain (VPS)
		BMI = NR	BMI = NR			Function (AKPS)
Lun et al.[35] 2005	Patients	Age (y) = 35.00 ± 11.00 F/M (%) = NR	Age (y) = 35.00 ± 11.00 F/M (%) = NR	Patellar bracing + exercise (n=32)	Exercise (n=34)	Pain (VAS)
		BMI = NR	BMI = NR	,		Function (KFS)
Manual therapy						
Anwar et al.[36] 2022	Patients	Age $(y) = NR$ F/M $(\%) = NR$	Age (y) = NR F/M (%) = NR	Pain release phenomenon	Exercise (n= NR)	Pain (VAS)
		BMI = NR	BMI = NR	technique + exercise (n=NR)		Function (LEFS)
Fatimah et al.[37] 2021	Patients	Age (y) = 29.88 ± 3.06 F/M (%) = $77\%/23\%$	Age (y) = 29.38 ± 3.45 F/M (%) = $73\%/27\%$	Tibiofemoral mobilisation +	Exercise (n=26)	Pain (NPRS)
		BMI = NR	BMI = NR	exercise (n=26)		

						Function (AKPS)
Telles et al.[38] 2016	Patients	Age (y) = 63.30 ± 12.10 F/M (%) = NR	Age (y) = 61.80 ± 17.30 F/M (%) = NR	Myofascial technique + exercise (n=9)	Exercise (n=9)	Pain (NPRS)
		BMI = 27.20 ± 5.10	BMI = 27.70 ± 4.50			Function (LEFS)
Blood flow restric	tion					
Constantinou et al.[39] 2022	Patients	Age (y) = 25.50 ± 14.00 F/M (%) = $43\%/57\%$	Age (y) = 30.50 ± 16.00 F/M (%) = $47\%/53\%$	Blood flow restriction + exercise (n=30)	Exercise (n=30)	Pain (VAS)
		$BMI = 24.60 \pm 3.00$	$BMI = 24.70 \pm 4.30$			Function (AKPS)
Giles et al.[40] 2017	Patients	Age (y) = 28.50 ± 5.20 F/M (%) = $60\%/40\%$	Age (y) = 26.70 ± 5.50 F/M (%) = $49\%/51\%$	Blood flow restriction + exercise (n=40)	Placebo blood flow restriction + exercise	Pain (VAS)
		BMI = NR	BMI = NR	, ,	(n=39)	Function (AKPS)
Electromyography	y biofeedback					· · · · · ·
Qi et al.[41] 2007	Patients	Age (y) = NR F/M (%) = NR BMI = NR	Age (y) = NR F/M (%) = NR BMI = NR	EMG Biofeedback + exercise (n=13)	Exercise (n=13)	Pain (PSS)
Dursun et al.[42] 2001	Patients	Age (y) = 36.90 ± 9.20 F/M (%) = 80%/20%	Age (y) = 36.60 ± 10.60 F/M (%) = $80\%/20\%$	EMG Biofeedback + exercise (n=30)	Exercise (n=30)	Pain (VAS)
		BMI = NR	BMI = NR			Function (FIQ)
Internal and exter						
Aghakeshizadeh et al.[43] 2021	Recreational athletes	Age (y) = 28.60 ± 7.70 F/M (%) = $52\%/48\%$	Age (y) = 28.90 ± 6.50 F/M (%) = $54\%/46\%$	Internal focus + exercise	Exercise (n=24)	Pain (VAS)
		$BMI = 23.70 \pm 1.90$	BMI = 23.70 ± 1.70	(n=23)		Function (AKPS)
		Age (y) = 29.90 ± 8.00 F/M (%) = 65%/35%				

		BMI = 23.90 ± 1.30		External focus + exercise (n=23)		
Mindfulness						
Bagheri et al.[44] 2021	Recreational runners	Age (y) = 27.90 ± 7.50 F/M (%) = $100\%/0\%$	Age (y) = 28.80 ± 6.80 F/M (%) = $100\%/0\%$	Mindfulness + exercise (n=15)	Exercise (n=14)	Pain (VAS)
		BMI = 23.70 ± 2.30	$BMI = 23.20 \pm 2.60$			Function (KOS)
Foot orthoses						
Eng et al.[45] 1993	Adolescents	Age (y) = 14.40 ± 1.10 F/M (%) = 100%/0% BMI = NR	Age (y) = 15.10 ± 1.40 F/M (%) = 100%/0% BMI = NR	Foot orthoses + exercise (n=10)	Placebo foot orthoses + exercise (n=10)	Pain (VAS)

Abbreviation: F, female; M, male; n, sample size; BMI, body mass index; NR, not reported; VAS, visual analogue scale; FIQ, functional index questionnaire; NPRS, numerical pain rating scale; AKPS, anterior knee pain scale; WOMAC, Western Ontario and McMaster Universities; PSS, pain severity scale; EMG, electromyographic; NAS, numerical analogue scale; NRS, numerical rating scale, LEFS, lower extremity functional scale; *: standard error; KOOS-ADL, Knee Injury and Osteoarthritis Outcome - Activities of Daily Living; VPS, verbal pain scale; KFS, knee function scale; KOS, knee outcome survey.

References

- 1 Jing W, Yingce Y, Xiaowei Y, *et al.* Intervention of muscle strength training combined with neuromuscular electrical stimulation on lower limb function and biomechanical changes in patients with patellofemoral pain. *CJTER*. 2024;28(9):1365-1371. doi:10.12307/2024.036.3.
- 2 Albornoz-Cabello M, Ibáñez-Vera AJ, Barrios-Quinta CJ, et al. Effects of Radiofrequency Diathermy Plus Therapeutic Exercises on Pain and Functionality of Patients with Patellofemoral Pain Syndrome: A Randomized Controlled Trial. J Clin Med. 2023;12:2348.
- 3 MV VK, Subramanian NB, Sreelatha S, *et al.* Physiotherapeutic interventions on quadriceps muscle architecture in patello-femoral pain syndrome. *Bioinformation*. 2023;19:454–9.
- Qayyum HA, Arsalan SA, Tanveer F, *et al.* Role of high power laser therapy on pain reduction in patients with patellofemoral pain syndrome. *Pak J Med Health Sci.* 2022;16:9–12.
- 5 Rodrigues GM, Paixão A, Arruda T, *et al.* Anodal transcranial direct current stimulation increases muscular strength and reduces pain perception in women with patellofemoral pain. *J Strength Cond Res.* 2022;36:371–8.
- 6 Albornoz-Cabello M, Ibáñez-Vera AJ, Aguilar-Ferrándiz ME, et al. Monopolar dielectric diathermy by emission of radiofrequency in Patellofemoral pain. A singleblind-randomized clinical trial. Electromagn Biol Med. 2020;39:282–9.
- 7 Celik D, Argut SK, Türker N, *et al.* The effectiveness of superimposed neuromuscular electrical stimulation combined with strengthening exercises on patellofemoral pain: A randomized controlled pilot trial. *J Back Musculoskelet Rehabil.* 2020;33:693–9.

- 8 Talbot LA, Solomon Z, Webb L, *et al.* Electrical Stimulation Therapies for Active Duty Military with Patellofemoral Pain Syndrome: A Randomized Trial. *Mil Med.* 2020;185:e963–71.
- Glaviano NR, Marshall AN, Mangum LC, et al. Impairment-based rehabilitation with patterned electrical neuromuscular stimulation and lower extremity function in individuals with patellofemoral pain: a preliminary study. J Athl Train. 2019;54:255– 69.
- 10 Nouri F, Raeissadat SA, Eliaspour D, et al. Efficacy of high-power laser in alleviating pain and improving function of patients with patellofemoral pain syndrome: a singleblind randomized controlled trial. J Lasers Med Sci. 2019;10:37–43.
- 11 Iammarrone CS, Cadossi M, Sambri A, *et al.* Is there a role of pulsed electromagnetic fields in management of patellofemoral pain syndrome? Randomized controlled study at one year follow-up. *Bioelectromagnetics*. 2016;37:81–8.
- 12 Bily W, Trimmel L, Mödlin M, *et al.* Training program and additional electric muscle stimulation for patellofemoral pain syndrome: a pilot study. *Arch Phys Med Rehabil*. 2008;89:1230–6.
- 13 Akarcali I, Tugay N, Kaya D, *et al.* The role of high voltage electrical stimulation in the rehabilitation of patellofemoral pain. *Pain Clin.* 2002;14:207–12.
- 14 Lee JH, Rhim HC, Jang K-M. Effect of Adding Kinesio Taping to Exercise Therapy in the Treatment of Patellofemoral Pain Syndrome. *Medicina (Mex)*. 2023;59:754.
- 15 Şahan TY, Vergili Ö, Oktaş B. Investigation of new application technique named star taping in patellofemoral pain: a randomized, single-blind, and placebo-controlled study. *Somatosens Mot Res.* 2023;1–8.
- 16 Songur A, Demirdel E, Kılıc O, *et al.* The effects of different taping methods on patellofemoral alignment, pain and function in individuals with patellofemoral pain:

- A randomized controlled trial. *PM R*. Published Online First: 29 August 2023. doi: 10.1002/pmrj.13067.
- 17 Basbug P, Kilic RT, Atay AO, *et al.* The effects of progressive neuromuscular exercise program and taping on muscle strength and pain in patellofemoral pain. A randomized controlled blind study. *Somatosens Mot Res.* 2022;39:39–45.
- 18 Arrebola LS, Teixeira de Carvalho R, Lam Wun PY, *et al.* Investigation of different application techniques for Kinesio Taping® with an accompanying exercise protocol for improvement of pain and functionality in patients with patellofemoral pain syndrome: A pilot study. *J Bodyw Mov Ther*. 2020;24:47–55.
- 19 Ghourbanpour A, Talebi GA, Hosseinzadeh S, *et al*. Effects of patellar taping on knee pain, functional disability, and patellar alignments in patients with patellofemoral pain syndrome: A randomized clinical trial. *J Bodyw Mov Ther*. 2018;22:493–7.
- 20 Günay E, Sarıkaya S, Özdolap Ş, *et al.* Effectiveness of the kinesiotaping in the patellofemoral pain syndrome. *Turk J Phys Med Rehabil*. 2017;63:299–306.
- 21 Akbaş E, Atay AO, Yüksel I. The effects of additional kinesio taping over exercise in the treatment of patellofemoral pain syndrome. *Acta Orthop Traumatol Turc*. 2011;45:335–41.
- 22 Mousavi SM, Khayambashi K, Nejadian SL, *et al.* The Effects of Kinesiotape and Strength Training on Knee Pain and Quadriceps Strength in People with Patellofemoral Pain Syndrome (PFPS). *J Isfahan Med Sch.* 2011;29:1657-68.
- 23 Whittingham M, Palmer S, Macmillan F. Effects of taping on pain and function in patellofemoral pain syndrome: a randomized controlled trial. *J Orthop Sports Phys Ther*. 2004;34:504–10.
- 24 Tunay VB, Baltaci G, Tunay S, *et al.* A comparison of different treatment approaches to patellofemoral pain syndrome. *The Pain Clinic*. 2003;15:179–84.

- 25 Clark DI, Downing N, Mitchell J, *et al.* Physiotherapy for anterior knee pain: a randomised controlled trial. *Ann Rheum Dis.* 2000;59:700–4.
- 26 Wu Z, Zou Z, Zhong J, *et al.* Effects of whole-body vibration plus hip-knee muscle strengthening training on adult patellofemoral pain syndrome: a randomized controlled trial. *Disabil Rehabil*. 2022;44:6017–25.
- 27 Rasti E, Rojhani-Shirazi Z, Ebrahimi N, *et al.* Effects of whole body vibration with exercise therapy versus exercise therapy alone on flexibility, vertical jump height, agility and pain in athletes with patellofemoral pain: a randomized clinical trial. *BMC Musculoskelet Disord*. 2020;21:705.
- Yañez-Álvarez A, Bermúdez-Pulgarín B, Hernández-Sánchez S, et al. Effects of exercise combined with whole body vibration in patients with patellofemoral pain syndrome: a randomised-controlled clinical trial. BMC Musculoskelet Disord. 2020;21:582.
- 29 Corum M, Basoglu C, Yakal S, et al. Effects of whole body vibration training on isokinetic muscular performance, pain, function, and quality of life in female patients with patellofemoral pain: a randomized controlled trial. J Musculoskelet Neuronal Interact. 2018;18:473–84.
- 30 Ma Y-T, Li L-H, Han Q, *et al*. Effects of trigger point dry needling on neuromuscular performance and pain of individuals affected by patellofemoral pain: a randomized controlled trial. *J Pain Res.* 2020;13:1677–86.
- 31 Zarei H, Bervis S, Piroozi S, *et al.* Added value of gluteus medius and quadratus lumborum dry needling in improving knee pain and function in female athletes with patellofemoral pain syndrome: a randomized clinical trial. *Arch Phys Med Rehabil.* 2020;101:265–74.

- 32 Sutlive TG, Golden A, King K, *et al.* Short-term effects of trigger point dry needling on pain and disability in subjects with patellofemoral pain syndrome. *Int J Sports Phys Ther.* 2018;13:462–73.
- 33 Petersen W, Ellermann A, Rembitzki IV, *et al.* Evaluating the potential synergistic benefit of a realignment brace on patients receiving exercise therapy for patellofemoral pain syndrome: a randomized clinical trial. *Arch Orthop Trauma Surg.* 2016;136:975–82.
- 34 Denton J, Willson JD, Ballantyne BT, *et al.* The addition of the Protonics brace system to a rehabilitation protocol to address patellofemoral joint syndrome. *J Orthop Sports Phys Ther.* 2005;35:210–9.
- 35 Lun VMY, Wiley JP, Meeuwisse WH, *et al.* Effectiveness of patellar bracing for treatment of patellofemoral pain syndrome. *Clin J Sport Med.* 2005;15:235–40.
- 36 Anwar S, Javaid M, Malik S, *et al.* Effects of mulligan pain release phenomenon technique in management of patellofemoral pain syndrome: RCT. *Pak J Med Health Sci.* 2022;16:72–72. doi: 10.53350/pjmhs2216372.
- 37 Fatimah I, Waqqar S. Effects of tibiofemoral mobilization in patients of Patellofemoral pain syndrome. *JPMA J Pak Med Assoc*. 2021;71:2506–10.
- 38 Telles G, Cristovão DR, Belache FATC, *et al.* The effect of adding myofascial techniques to an exercise programme for patients with anterior knee pain. *J Bodyw Mov Ther.* 2016;20:844–50.
- 39 Constantinou A, Mamais I, Papathanasiou G, *et al.* Comparing hip and knee focused exercises versus hip and knee focused exercises with the use of blood flow restriction training in adults with patellofemoral pain. *Eur J Phys Rehabil Med.* 2022;58:225–35.

- 40 Giles L, Webster KE, McClelland J, *et al.* Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial. *Br J Sports Med.* 2017;51:1688–94.
- 41 Qi Z, Ng GYF. EMG analysis of vastus medialis obliquus/vastus lateralis activities in subjects with patellofemoral pain syndrome before and after a home exercise program. *J Phys Ther Sci.* 2007;19:131–7.
- 42 Dursun N, Dursun E, Kiliç Z. Electromyographic biofeedback-controlled exercise versus conservative care for patellofemoral pain syndrome. *Arch Phys Med Rehabil*. 2001;82:1692–5.
- 43 Aghakeshizadeh F, Letafatkar A, Thomas AC. Internal and external focus show similar effect on the gait kinematics in patients with patellofemoral pain: A randomised controlled trial. *Gait Posture*. 2021;84:155–61.
- 44 Bagheri S, Naderi A, Mirali S, *et al.* Adding mindfulness practice to exercise therapy for female recreational runners with patellofemoral pain: a randomized controlled trial. *J Athl Train*. 2021;56:902–11.
- 45 Eng JJ, Pierrynowski MR. Evaluation of soft foot orthotics in the treatment of patellofemoral pain syndrome. *Phys Ther*. 1993;73:62–8; discussion 68-70.