## **Electronic supplementary material**

Adherence to aerobic and muscle-strengthening activities guidelines: A systematic review and meta-analysis of 3.3 million participants across 32 countries

Online supplemental emethod 1. Electronic search strategy.

Online supplemental emethod 2. Excluded studies and reasons for exclusion.

**Online supplemental eTable 1.** Results of the quality assessment checklist for prevalence studies.

**Online supplemental eFigure 1**. Forest plot of adherence to aerobic and musclestrengthening activities guidelines by sex.

**Online supplemental eFigure 2**. Forest plot of adherence to aerobic and muscle-strengthening activities guidelines by age.

**Online supplemental eFigure 3**. Forest plot of adherence to aerobic and muscle-strengthening activities guidelines by weight status.

**Online supplemental eFigure 4**. Forest plot of adherence to aerobic and musclestrengthening activities guidelines by education level.

**Online supplemental eFigure 5**. Forest plot of adherence to aerobic and musclestrengthening activities guidelines by smoking status.

**Online supplemental eFigure 6**. Forest plot of adherence to aerobic and muscle-strengthening activities guidelines by self-rated health status.

**Online supplemental eFigure 7**. Doi plot for adults  $\geq$  18 years old.

Online supplemental eFigure 8. Doi plot for adolescents aged 12-17 years old.

#### Online supplemental emethod 1. Electronic search strategy.

#### PubMed

#1 ((("aerobic"[All Fields] AND "aerobic"[All Fields]) OR OR "exercise"[MeSH Terms] OR "exercise"[All Fields] AND ("exercise"[MeSH Terms] OR "exercise"[All Fields] OR ("physical"[All Fields] AND "activity"[All Fields]) OR "physical activity"[All Fields]) AND ("muscle-strengthening"[All Fields] AND ("activable"[All Fields] OR "activate" [All Fields] OR "activated" [All Fields] OR "activates" [All Fields] OR "activating" [All Fields] OR "activation" [All Fields] OR "activations" [All Fields] OR "activator" [All Fields] OR "activator s" [All Fields] OR "activators" [All Fields] OR "active" [All Fields] OR "actived" [All Fields] OR "actively" [All Fields] OR "actives" [All Fields] OR "activities" [All Fields] OR "activity s" [All Fields] OR "activitys" [All Fields] OR "motor activity" [MeSH Terms] OR ("motor" [All Fields] AND "activity" [All Fields]) OR "motor activity" [All Fields] OR "activity" [All Fields])) AND ("strengthen" [All Fields] OR "strengthened" [All Fields] OR "strengthening" [All Fields] OR "strengthens" [All Fields])) OR ("muscle-strengthening" [All Fields] AND ("exercise" [MeSH Terms] OR "exercise" [All Fields] OR "exercises" [All Fields] OR "exercise therapy" [MeSH Terms] OR ("exercise" [All Fields] AND "therapy" [All Fields]) OR "exercise therapy" [All Fields] OR "exercise s" [All Fields] OR "exercised" [All Fields] OR "exerciser" [All Fields] OR "exercisers" [All Fields] OR "exercising"[All Fields])))

#2 ("adherance" [All Fields] OR "adhere" [All Fields] OR "adhered" [All Fields] OR
"adherence" [All Fields] OR "adherences" [All Fields] OR "adherent" [All Fields] OR
"adherents" [All Fields] OR "adherer" [All Fields] OR "adherers" [All Fields] OR
"adheres" [All Fields] OR "adhering" [All Fields]) AND ("guideline" [Publication Type]
OR "guidelines as topic" [MeSH Terms] OR "guidelines" [All Fields] OR
"recommendation as topic" [MeSH Terms] OR "recommendation" [All Fields])

#3 #1 AND #2

#### Web of Science

#1 TOPIC: ("aerobic physical activity" OR "exercise")

#2 TOPIC: ("muscle-strengthening" OR "strengthening" OR "strengthen" OR "strengthened" OR "strengthens")

#3 TOPIC: ("adherence" OR "adhering")

#4 TOPIC: ("guideline" OR "guidelines" OR "recommendation")

#5 #4 AND #3 AND #2 AND #1

SPORTDiscus

S1 (MH " aerobic physical activity") OR (MH "exercise")

S2 (MH " muscle-strengthening") OR 'strengthening' OR 'strengthene' OR 'strengthened' OR 'strengthens'

S3 ((MH "adherence") OR 'adhering'

S4 (MH "guideline") OR 'guideline' OR 'recommendation'

S5 S4 AND S3

## EMBASE

(('adherence'/exp OR adherence OR adhering:ti,ab,kw) AND 'physical activity':ti,ab,kw OR exercise:ti,ab,kw) AND ('resistance training':ti,ab,kw OR 'strengthening exercise':ti,ab,kw) AND (guideline:ti,ab,kw OR recommendation:ti,ab,kw OR guidelines)

#### Scopus

(TITLE-ABS-KEY (adherence OR adhering) AND TITLE-ABS-KEY ("aerobic physical activity" OR exercise OR "physical activity") AND TITLE-ABS-KEY (strength OR strengthening OR muscle-strengthening OR strengthen OR strengthening) AND TITLE-ABS-KEY (guidelines OR guideline OR recommendations))

Online supplemental emethod 2. Excluded studies and reasons for exclusion.

Ahn, H., Choi, H. Y., & Ki, M. (2010). The association between levels of physical activity and low handgrip strength: Korea National. People, 39(4), 412-23.

Reason for exclusion: Duplicated

Bennie, J. A., De Cocker, K., Teychenne, M. J., Brown, W. J., & Biddle, S. J. (2019). The epidemiology of aerobic physical activity and muscle-strengthening activity guideline adherence among 383,928 US adults. International Journal of Behavioral Nutrition and Physical Activity, 16(1), 1-11.

Reason for exclusion: Duplicated

Bennie, J. A., Teychenne, M. J., De Cocker, K., & Biddle, S. J. (2019). Associations between aerobic and muscle-strengthening exercise with depressive symptom severity among 17,839 US adults. Preventive medicine, 121, 121-127.

Reason for exclusion: Duplicated

Bennie, J. A., De Cocker, K., Biddle, S. J., & Teychenne, M. J. (2020). Joint and dosedependent associations between aerobic and muscle-strengthening activity with depression: A cross-sectional study of 1.48 million adults between 2011 and 2017. Depression and anxiety, 37(2), 166-178.

Reason for exclusion: Duplicated

Bennie, J. A., De Cocker, K., & Duncan, M. J. (2021). Associations of musclestrengthening and aerobic exercise with self-reported components of sleep health among a nationally representative sample of 47,564 US adults. Sleep Health, 7(2), 281-288.

Reason for exclusion: Duplicated

Bennie, J. A., Ding, D., & De Cocker, K. Dose-dependent associations of joint aerobic and muscle-strengthening exercise with obesity: A cross-sectional study of 280,605 adults. Journal of sport and health science, S2095-2546.

Reason for exclusion: Duplicated

Blackwell, D. L., & Clarke, T. C. (2016). Occupational Differences Among Employed Adults Who Met 2008 Federal Guidelines for Both Aerobic and Muscle-strengthening Activities: United States, 2008-2014. National health statistics reports, (94), 1-12.

Reason for exclusion: Duplicated

Blackwell, D. L., & Clarke, T. C. (2018). State variation in meeting the 2008 federal guidelines for both aerobic and muscle-strengthening activities through leisure-time physical activity among adults aged 18-64: United States, 2010-2015. National health statistics reports, (112), 1-22.

Reason for exclusion: Duplicated

Branscum, P., & Fairchild, G. (2019). Differences in determinants of aerobic and muscle strengthening physical activity among college students: a reasoned action approach. Journal of Sports Sciences, 37(1), 90-99.

Reason for exclusion: Non-representative sample

Buckner, S. L., Loenneke, J. P., & Loprinzi, P. D. (2017). Single and combined associations of accelerometer-assessed physical activity and muscle-strengthening activities on plasma homocysteine in a national sample. Clinical physiology and functional imaging, 37(6), 669-674.

Reason for exclusion: Duplicated

Carlson, S. A., Fulton, J. E., Schoenborn, C. A., & Loustalot, F. (2010). Trend and prevalence estimates based on the 2008 Physical Activity Guidelines for Americans. American journal of preventive medicine, 39(4), 305-313.

Reason for exclusion: Duplicated

Centers for Disease Control and Prevention (CDC. (2013). Suicide among adults aged 35-64 years--United States, 1999-2010. MMWR. Morbidity and mortality weekly report, 62(17), 321-325.

Reason for exclusion: Duplicated

Harris, C. D., Watson, K. B., Carlson, S. A., Fulton, J. E., Dorn, J. M., & Elam-Evans, L. (2013). Adult participation in aerobic and muscle-strengthening physical activities— United States, 2011. Morbidity and Mortality Weekly Report, 62(17), 326-330.

Reason for exclusion: Duplicated

Chen, S., Malete, L., & Ling, J. An examination of physical activity guidelines and health-related quality of life among US older adults. Preventive medicine, 156, 106986.

Reason for exclusion: Duplicated

Dankel, S. J., Loenneke, J. P., & Loprinzi, P. D. (2016). The individual, joint, and additive interaction associations of aerobic-based physical activity and muscle strengthening activities on metabolic syndrome. International journal of behavioral medicine, 23(6), 707-713.

Reason for exclusion: Duplicated

Desmond, R., Jackson, B. E., & Hunter, G. (2015). Utilization of 2013 BRFSS Physical Activity Data for State Cancer Control Plan Objectives: Alabama Data. Southern Medical Journal, 108(5), 290-297.

Reason for exclusion: Duplicated

Du, Y., Liu, B., Sun, Y., Snetselaar, L. G., Wallace, R. B., & Bao, W. (2019). Trends in adherence to the physical activity guidelines for Americans for aerobic activity and time spent on sedentary behavior among US adults, 2007 to 2016. JAMA network open, 2(7), e197597.

Reason for exclusion: Study design

Lange, C., & Manz, K. (2017). Health-enhancing physical activity during leisure time among adults in Germany. Journal of Health Monitoring, 2(2).

Reason for exclusion: Duplicated

Grøntved, A., Pan, A., Mekary, R. A., Stampfer, M., Willett, W. C., Manson, J. E., & Hu, F. B. (2014). Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS medicine, 11(1), e1001587.

Reason for exclusion: Non-representative sample

Hyde, E. T., Whitfield, G. P., Omura, J. D., Fulton, J. E., & Carlson, S. A. (2021). Trends in meeting the Physical Activity Guidelines: muscle-strengthening alone and combined with aerobic activity, United States, 1998–2018. Journal of Physical Activity and Health, 18(S1), S37-S44.

Reason for exclusion: Duplicated

Hyde, E. T., Watson, K. B., Omura, J. D., Janz, K. F., Lee, S. M., Fulton, J. E., & Carlson, S. A. (2021). Surveillance of Meeting the Youth Physical Activity Guideline: Impact of Including Vigorous-Intensity and Bone-Strengthening Activities. Research Quarterly for Exercise and Sport, 1-6.

Reason for exclusion: Duplicated

Kim, J. (2017). Longitudinal trend of prevalence of meeting physical activity guidelines among korean adults. Exercise Medicine, 1.

Reason for exclusion: Study design

Lim, J., Park, S., & Kim, J. S. (2021). Joint association of aerobic physical activity and muscle-strengthening activities with metabolic syndrome: the Korean National Health and Nutrition Examination Survey 2014-2015. Epidemiology and health, 43, e2021096.

Reason for exclusion: Duplicated

Mama, S. K., Bhuiyan, N., Foo, W., Segel, J. E., Bluethmann, S. M., Winkels, R. M., ... & Schmitz, K. H. (2020). Rural-urban differences in meeting physical activity recommendations and health status in cancer survivors in central Pennsylvania. Supportive Care in Cancer, 28(10), 5013-5022.

Reason for exclusion: Clinical population

Mekary, R. A., Grøntved, A., Despres, J. P., De Moura, L. P., Asgarzadeh, M., Willett, W. C., ... & Hu, F. B. (2015). Weight training, aerobic physical activities, and long-term waist circumference change in men. Obesity, 23(2), 461-467.

Reason for exclusion: Non-representative sample

Merlo, C. L., Jones, S. E., Michael, S. L., Chen, T. J., Sliwa, S. A., Lee, S. H., ... & Park, S. (2020). Dietary and Physical Activity Behaviors Among High School Students-Youth Risk Behavior Survey, United States, 2019. MMWR supplements, 69(1), 64-76.

Reason for exclusion: Duplicated

Mu, L., Cohen, A. J., & Mukamal, K. J. (2015). Prevalence and predictors of resistance and aerobic exercise among hypertensive adults in the United States. Journal of human hypertension, 29(6), 394-395.

Reason for exclusion: Duplicated

Murphy, L. B., Hootman, J. M., Boring, M. A., Carlson, S. A., Qin, J., Barbour, K. E., ... & Helmick, C. G. (2017). Leisure Time Physical Activity Among US Adults With Arthritis, 2008–2015. American Journal of Preventive Medicine, 53(3), 345-354.

Reason for exclusion: Clinical population

Nie, J., Haberstroh, M., Acosta, T., Huang, W., Wang, Y., & Barengo, N. C. (2021). Independent and joint associations between leisure time physical activity and strength activities with mortality outcomes in older adults at least 65 years of age: a prospective cohort study. The Journals of Gerontology: Series A, 76(12), 2122-2131.

Reason for exclusion: Study design

Oftedal, S., Smith, J., Vandelanotte, C., Burton, N. W., & Duncan, M. J. (2019). Resistance training in addition to aerobic activity is associated with lower likelihood of depression and comorbid depression and anxiety symptoms: a cross sectional analysis of Australian women. Preventive Medicine, 126, 105773.

Reason for exclusion: Non-representative sample

Oftedal, S., Holliday, E. G., Reynolds, A. C., Bennie, J. A., Kline, C. E., & Duncan, M. J. (2022). Prevalence, Trends, and Correlates of Joint Patterns of Aerobic and Muscle-Strengthening Activity and Sleep Duration: A Pooled Analysis of 359,019 Adults in the National Health Interview Survey 2004–2018. Journal of Physical Activity and Health, 19(4), 246-255.

Reason for exclusion: Duplicated

Quinn, T. D., Wu, F., Mody, D., Bushover, B., Mendez, D. D., Schiff, M., & Fabio, A. (2019). Associations Between Neighborhood Social Cohesion and Physical Activity in the United States, National Health Interview Survey, 2017. Preventing Chronic Disease, 16, E163.

Reason for exclusion: Duplicated

Schoenborn, C. A., & Stommel, M. (2011). Adherence to the 2008 adult physical activity guidelines and mortality risk. American journal of preventive medicine, 40(5), 514-521.

Reason for exclusion: Duplicated

Siahpush, M., Levan, T. D., Nguyen, M. N., Grimm, B. L., Ramos, A. K., Michaud, T. L., & Johansson, P. L. (2019). The association of physical activity and mortality risk reduction among smokers: Results from 1998–2009 national health Interview surveys–national death index linkage. Journal of Physical Activity and Health, 16(10), 865-871.

Reason for exclusion: Duplicated

Song, M., Nam, S., Buss, J., & Lee, S. J. (2020). Assessing the prevalence of meeting physical activity recommendations among US healthcare workers: Data from the 2015 National Health Interview Survey. Archives of Environmental & Occupational Health, 75(7), 422-430.

Reason for exclusion: Duplicated

Strain, T., Fitzsimons, C., Kelly, P., & Mutrie, N. (2016). The forgotten guidelines: cross-sectional analysis of participation in muscle strengthening and balance & co-ordination activities by adults and older adults in Scotland. BMC public health, 16(1), 1-12.

Reason for exclusion: Study design

Sudeck, G., Geidl, W., Abu-Omar, K., Finger, J. D., Krauß, I., & Pfeifer, K. (2021). Do adults with non-communicable diseases meet the German physical activity recommendations?. German Journal of Exercise and Sport Research, 51(2), 183-193.

Reason for exclusion: Duplicated

Sung, J. H., Son, S. R., Baek, S. H., & Kim, B. J. (2021). Association of occupation with the daily physical activity and sedentary behaviour of middle-aged workers in Korea: a cross-sectional study based on data from the Korea National Health and Nutrition Examination Survey. BMJ open, 11(11), e055729.

Reason for exclusion: Study design

Tarasenko, Y., Chen, C., & Schoenberg, N. (2017). Self-reported physical activity levels of older cancer survivors: Results from the 2014 National Health Interview Survey. Journal of the American Geriatrics Society, 65(2), e39-e44.

Reason for exclusion: Duplicated

Tarasenko, Y. N., Linder, D. F., & Miller, E. A. (2018). Muscle-strengthening and aerobic activities and mortality among 3+ year cancer survivors in the US. Cancer Causes & Control, 29(4), 475-484.

Reason for exclusion: Duplicated

Tittlbach, S. A., Hoffmann, S. W., & Bennie, J. A. (2022). Association of meeting both muscle strengthening and aerobic exercise guidelines with prevalent overweight and obesity classes-results from a nationally representative sample of German adults. European Journal of Sport Science, 22(3), 436-446.

Reason for exclusion: Duplicated

Visaria, A., Nagaraj, B., Shah, M., Kethidi, N., Modak, A., Shahani, J., ... & Raghuwanshi, M. (2022). Low Amount and Intensity of Leisure-time Physical Activity in Asian Indian Adults. American Journal of Health Promotion, 36(3), 440-449.

Reason for exclusion: Duplicated

Walker, T. J., Tullar, J. M., Diamond, P. M., Kohl, H. W., & Amick, B. C. (2017). The relation of combined aerobic and muscle-strengthening physical activities with presenteeism. Journal of Physical Activity and Health, 14(11), 893-898.

Reason for exclusion: Non-representative sample

Watson, K. B., Whitfield, G., Chen, T. J., Hyde, E. T., & Omura, J. D. (2021). Trends in Aerobic and Muscle-Strengthening Physical Activity by Race/Ethnicity Across Income Levels Among US Adults, 1998–2018. Journal of Physical Activity and Health, 18(S1), S45-S52.

Reason for exclusion: Duplicated

Xin, F., Zhu, Z., Chen, S., Chen, H., Hu, X., Ma, X., ... & Tang, Y. (2022). Prevalence and correlates of meeting the muscle-strengthening exercise recommendations among Chinese children and adolescents: Results from 2019 Physical Activity and Fitness in China—The Youth Study. Journal of Sport and Health Science, 11(3), 358-366.

Reason for exclusion: Study design

Zhao, G., Li, C., Ford, E. S., Fulton, J. E., Carlson, S. A., Okoro, C. A., ... & Balluz, L. S. (2014). Leisure-time aerobic physical activity, muscle-strengthening activity and mortality risks among US adults: the NHANES linked mortality study. British journal of sports medicine, 48(3), 244-249.

Reason for exclusion: Duplicated

**Online supplemental eTable 1.** Characteristics of studies included in the metaanalysis.

| Author,<br>year                 | Country   | Study<br>design     | Source of information                                                        | Study<br>period | N (%<br>females)<br>/ Age           | Physical activity<br>assessment and<br>physical active<br>definition                                                                                                                                                                                                                                                      | Overall<br>prevalence |
|---------------------------------|-----------|---------------------|------------------------------------------------------------------------------|-----------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Bennie et<br>al. 2016<br>[21]   | Australia | Cross-<br>sectional | National<br>Nutrition and<br>Physical<br>Activity Survey<br>(NNPAS)          | 2011-<br>2012   | 9,284<br>(54.1) /<br>18-85<br>years | Active Australia<br>Survey<br>≥150 MVPA min<br>per week and ≥2<br>sessions per week<br>of strength or<br>toning activities                                                                                                                                                                                                | 15%                   |
| Bennie et<br>al. 2017<br>[22]   | Finland   | Cross-<br>sectional | Regional Health<br>and Well-being<br>Study                                   | 2013-<br>2014   | 69,032<br>(52.0) / ≥<br>18 years    | Self-reported<br>Finnish<br>recommendations:<br>≥150 moderate-<br>intensity min per<br>week or ≥75<br>vigorous-intensity<br>min per week or<br>an equivalent<br>combination of<br>both and reporting<br>MVPA on ≥3<br>days per week<br>and ≥2 times per<br>week of MSA<br>and/or balance<br>training                      | 10.8%                 |
| Bennie et<br>al. 2020 A<br>[23] | USA       | Cross-<br>sectional | US Behavioral<br>Risk Factor<br>Surveillance<br>System<br>(BRFSS)<br>surveys | 2011-<br>2017   | 1,677,108<br>(51.6) / ≥<br>18 years | Behavioural Risk<br>Factor<br>Surveillance<br>System<br>Meeting both 150<br>min per week of<br>moderate-<br>intensity aerobic<br>physical activity,<br>or 75 min per<br>week of vigorous-<br>intensity aerobic<br>physical activity,<br>or an equivalent<br>combination of<br>both and ≥ 2<br>sessions per week<br>of MSA | 20.2%                 |

| Bennie et<br>al. 2020 B<br>[24]    | South<br>Korea              | Cross-<br>sectional | Korea National<br>Health and<br>Nutritional<br>Examination<br>Survey<br>(KNHANES) | 2014-<br>2015 | 9,120<br>(50.3) /<br>20-80<br>years  | GPAQ<br>Meeting both<br>MVPA ≥150<br>minutes per week<br>and muscle<br>strengthening<br>exercise ≥2<br>sessions per week                                                                                                                         | 15.4% |
|------------------------------------|-----------------------------|---------------------|-----------------------------------------------------------------------------------|---------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Bennie et<br>al. 2021<br>[25]      | Germany                     | Cross-<br>sectional | German Health<br>Update survey                                                    | 2014          | 24,016<br>(51.1) / ≥<br>18 years     | Interview Survey<br>Physical Activity<br>Questionnaire<br>Meeting both<br>MVPA ≥150<br>minutes per week<br>and muscle<br>strengthening<br>exercise ≥2<br>sessions per week                                                                       | 22.6% |
| Bennie and<br>Wiesner<br>2022 [26] | 28<br>European<br>countries | Cross-<br>sectional | European<br>Health<br>Interview<br>Survey                                         | 2013-<br>2014 | 280,605<br>(52.1) / ≥<br>18 years    | European<br>Health Interview<br>Survey – Physical<br>Activity<br>Questionnaire<br>(EHIS-PAQ)<br>Aerobic physical<br>activity $\geq$ 150<br>min/ per week<br>and muscle<br>strengthening<br>exercise $\geq$ 2                                     | 15.0% |
| CDC 2011<br>[39]                   | USA                         | Cross-<br>sectional | National Youth<br>Physical<br>Activity and<br>Nutrition Study<br>(NYPANS)         | 2010          | 9,701<br>(NR) /<br>14–18<br>years    | sessions per week<br>NYPANS<br>questions<br>Aerobic physical<br>activity and<br>muscle-<br>strengthening<br>activity<br>participation in<br>≥60 minutes of<br>aerobic activity<br>per day, 7 days<br>per week and<br>MSA on ≥3 days<br>per week) | 15.3% |
| Chen et al.<br>2021 [9]            | USA                         | Cross-<br>sectional | Youth Risk<br>Behavior<br>Survey (YRBS)                                           | 2011-<br>2019 | 86,869<br>(49.3) /<br>14-18<br>years | YRBS questions<br>Aerobic physical<br>activity and<br>muscle-<br>strengthening<br>activity                                                                                                                                                       | 19.2% |

| Churilla et<br>al. 2022<br>[27]  | USA     | Cross-<br>sectional | US Behavioral<br>Risk Factor<br>Surveillance<br>System<br>(BRFSS)<br>surveys | 2019                | 323,435<br>(49.6) / ≥<br>18 years    | participation of $\geq$<br>60 min of aerobic<br>activity per day, 7<br>days per week<br>and MSA on $\geq$ 3<br>days per week<br>Behavioural Risk<br>Factor<br>Surveillance<br>System<br>Aerobic physical<br>activity $\geq$ 150 min<br>per week and<br>muscle<br>strengthening<br>exercise $\geq$ 2 | 23.5% |
|----------------------------------|---------|---------------------|------------------------------------------------------------------------------|---------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| de Cocker<br>et al. 2020<br>[28] | UK      | Cross-<br>sectional | Health Survey<br>for England<br>(HSE) study                                  | 2012-<br>2016       | 14,050<br>(56.0%) /<br>≥ 16<br>years | sessions per week<br>Self-reported<br>questionnaire<br>≥ 150 min of<br>moderate activity<br>or 75 min of<br>vigorous activity<br>per week or an<br>equivalent<br>combination of<br>both; and<br>undertaking MSA<br>on at least two<br>days per week                                                 | 25.7% |
| Dankel et<br>al. 2016<br>[29]    | USA     | Cross-<br>sectional | National Health<br>and Nutrition<br>Examination<br>Survey<br>(NHANES)        | 2003-<br>2006       | 4,587<br>(49.0) / ≥<br>20 years      | Accelerometry<br>(ActiGraph 7164)<br>and questionnaire<br>Accelerometer-<br>determined<br>physical activity $\geq$<br>150 min per week<br>of MVPA and $\geq$ 8<br>days of MSA<br>within the past 30<br>days                                                                                         | 11.0% |
| Dorner et<br>al. 2021<br>[30]    | Austria | Cross-<br>sectional | Austrian Health<br>Interview<br>Surveys                                      | 2014<br>and<br>2019 | 31,232<br>(51.2%) /<br>≥ 15<br>years | European<br>Health Interview<br>Survey – Physical<br>Activity<br>Questionnaire<br>(EHIS-PAQ)<br>Aerobic physical<br>activity $\geq$ 150 min<br>per week and<br>muscle                                                                                                                               | 23.8% |

|                                          |                    |                     |                                                                             |               |                                                                                                       | strengthening<br>exercise $\geq 2$<br>sessions per week                                                                                                                                                                                                                                                                                                              |                                                               |
|------------------------------------------|--------------------|---------------------|-----------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                          |                    |                     |                                                                             |               |                                                                                                       | Short<br>Questionnaire to<br>Assess Health-<br>enhancing<br>physical activity<br>(SQUASH)                                                                                                                                                                                                                                                                            |                                                               |
| Duijvestijn<br>et al. 2020<br>[31]       | The<br>Netherlands | Cross-<br>sectional | Dutch Health<br>Survey/Lifestyle<br>Monitor by<br>Statistics<br>Netherlands | 2018          | 226,083<br>(52.0%) /<br>≥ 12<br>years                                                                 | Adolescents:<br>Aerobic physical<br>activity and<br>muscle-<br>strengthening<br>activity<br>participation in $\geq$<br>60 min of aerobic<br>activity per day, 7<br>days per week<br>and MSA on $\geq$ 3<br>days per week<br>Adults: Aerobic<br>physical activity $\geq$<br>150 min per week<br>and muscle<br>strengthening<br>exercise $\geq$ 2<br>sessions per week | 33.9% (12-<br>17 years<br>old)<br>43.5%<br>(≥18 years<br>old) |
| Lackinger<br>and<br>Dorner,<br>2015 [32] | Austria            | Cross-<br>sectional | Austrian Health<br>Interview<br>Survey                                      | 2006-<br>2007 | 467<br>(46.7) /<br>20-29<br>years                                                                     | IPAQ<br>Aerobic physical<br>activity $\geq 150$ min<br>per week and<br>muscle<br>strengthening<br>exercise $\geq 2$<br>sessions per week                                                                                                                                                                                                                             | 39.4%                                                         |
| Lee et al.<br>2022 [33]                  | South<br>Korea     | Cross-<br>sectional | National Health<br>Insurance<br>Service of South<br>Korea                   | 2018-<br>2019 | Cohort<br>A: 76,395<br>$(51.2) / \ge$<br>20 years<br>Cohort B:<br>2,295<br>$(53.5) / \ge$<br>20 years | Self-reported<br>questionnaire<br>≥ 150 min of<br>moderate activity<br>or 75 min of<br>vigorous activity<br>per week or an<br>equivalent<br>combination of<br>both; and<br>undertaking MSA<br>on at least two<br>days per week                                                                                                                                       | Cohort A:<br>14.5%<br>Cohort B:<br>12.7%                      |
| Sandercock<br>et al. 2022<br>[34]        | UK                 | Cross-<br>sectional | Active Lives<br>Survey                                                      | 2015-<br>2017 | 275,182<br>(48.9) /                                                                                   | Active Lives<br>dataset                                                                                                                                                                                                                                                                                                                                              | 26.5%                                                         |

|                                           |                |                     |                                                                                   |               | 18-95<br>years                     | 150 min per week<br>equivalent<br>moderate physical<br>activity including<br>two sessions of<br>strengthening<br>activities                                                                                                                                          |       |
|-------------------------------------------|----------------|---------------------|-----------------------------------------------------------------------------------|---------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Song et al.<br>2013 [35]                  | USA            | Cross-<br>sectional | National Health<br>and Nutrition<br>Examination<br>Survey<br>(NHANES)             | 1999-<br>2006 | 6547<br>(48.9) /<br>12-17<br>years | Self-reported<br>questionnaire<br>Aerobic physical<br>activity and MSA<br>participation in $\geq$<br>60 min of aerobic<br>activity per day, 7<br>days per week<br>and MSA on $\geq$ 3<br>days per week                                                               | 16.3% |
| Sung et al.<br>2022 [36]                  | South<br>Korea | Cross-<br>sectional | Korea National<br>Health and<br>Nutritional<br>Examination<br>Survey<br>(KNHANES) | 2016-<br>2019 | 23,505<br>(50.5) / ≥<br>20 years   | GPAQ<br>Aerobic physical<br>activity $\geq 150$ min<br>per week and<br>muscle<br>strengthening<br>exercise $\geq 2$<br>sessions per week                                                                                                                             | 14.5% |
| Wennman<br>and<br>Borodulin,<br>2020 [37] | Finland        | Cross-<br>sectional | FinHealth 2017<br>Study                                                           | 2017          | 5335<br>(56.0) / ≥<br>18 years     | FinHealth Health-<br>Enhancing<br>Physical Activity<br>Questionnaire<br>≥ 150 min of<br>moderate activity<br>or 75 min of<br>vigorous activity<br>per week or an<br>equivalent<br>combination of<br>both; and<br>undertaking MSA<br>on at least two<br>days per week | 34.2% |
| Whitfield<br>et al. 2019<br>[38]          | USA            | Cross-<br>sectional | National Health<br>Interview<br>Survey                                            | 2017          | 23,006<br>(51.8) / ≥<br>18 years   | Sample Adult<br>Core questions<br>150–300 min of<br>moderate-<br>intensity, or 75–<br>150 min of<br>vigorous-intensity<br>aerobic physical<br>activity per week,<br>or an equivalent<br>combination of                                                               | 24.3% |

|                         |     |             |                                        |               |                                   | moderate- and<br>vigorous-intensity<br>aerobic physical<br>activity and MSA<br>of at least<br>moderate<br>intensity that<br>involve all major<br>muscle groups on                                                                                                                                                                                     |       |
|-------------------------|-----|-------------|----------------------------------------|---------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Zhao et al.<br>2020 [8] | USA | Prospective | National Health<br>Interview<br>Survey | 1997-<br>2014 | 479,856<br>(48.2) / ≥<br>18 years | <ul> <li>≥ 2 days per week</li> <li>Sample Adult</li> <li>Core questions</li> <li>≥ 150 min of</li> <li>moderate activity</li> <li>or 75 min of</li> <li>vigorous activity</li> <li>per week or an</li> <li>equivalent</li> <li>combination of</li> <li>both; and</li> <li>undertaking MSA</li> <li>on at least two</li> <li>days per week</li> </ul> | 15.9% |
|                         |     |             |                                        |               |                                   | al physical activity quivity; NR, not reporte                                                                                                                                                                                                                                                                                                         |       |

| Study                        | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Total score | Summary on the overall risk of study bias |
|------------------------------|---|---|---|---|---|---|---|---|---|-------------|-------------------------------------------|
| Bennie et al. 2016           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |
| Bennie et al. 2017           | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 2           | Low risk                                  |
| Bennie et al. 2020 A         | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1           | Low risk                                  |
| Bennie et al. 2020 B         | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1           | Low risk                                  |
| Bennie et al. 2021           | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1           | Low risk                                  |
| Bennie & Wiesner<br>2022     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1           | Low risk                                  |
| CDC 2011                     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1           | Low risk                                  |
| Chen et al. 2021             | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |
| Churilla et al. 2022         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |
| De Cocker et al.<br>2020     | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 2           | Low risk                                  |
| Dankel et al. 2016           | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |
| Dorner et al. 2021           | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1           | Low risk                                  |
| Duijvestijn et al.<br>2020   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |
| Lackinger &<br>Dorner, 2015  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |
| Lee et al. 2022              | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |
| Sandercock et al. 2022       | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1           | Low risk                                  |
| Song et al. 2013             | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1           | Low risk                                  |
| Sung et al. 2022             | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |
| Wennman &<br>Borodulin, 2020 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1           | Low risk                                  |
| Whitfield et al. 2019        | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1           | Low risk                                  |
| Zhao et al. 2020             | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0           | Low risk                                  |

Online supplemental eTable 2. Results of the quality assessment checklist for prevalence studies.

**Online supplemental eFigure 1**. Forest plot of adherence to aerobic and musclestrengthening activities guidelines by sex.

| Study                                        | %<br>Prevalence (95% CI) Weigh |
|----------------------------------------------|--------------------------------|
| Men                                          |                                |
| Bennie et al. 2016 🔶                         | 16.91 (15.82, 18.06) 7.64      |
| Bennie et al. 2017                           | 9.60 (9.28, 9.93) 7.72         |
| Bennie et al. 2021 +                         | 24.70 (23.90, 25.52) 7.70      |
| Bennie and Wiesner 2022                      | 17.30 (17.09, 17.51) 7.73      |
| CDC 2013 •                                   | 23.40 (23.28, 23.52) 7.73      |
| Chen et al. 2021 🔶                           | 23.10 (22.09, 24.15) 7.67      |
| Duijvestijn et al. 2020                      |                                |
| Lee et al. 2022                              | 19.31 (18.91, 19.71) 7.72      |
| Sandercock et al. 2022                       | 29.00 (28.76, 29.24) 7.73      |
| Sung et al. 2022                             | 19.84 (19.08, 20.62) 7.69      |
| Wennman and Borodulin, 2020                  | → 34.00 (32.11, 35.94) 7.56    |
| Whitfield et al. 2019                        | 28.80 (27.97, 29.65) 7.70      |
| Zhao et al. 2020 🔹                           | 18.70 (18.54, 18.87) 7.73      |
| Subtotal (I <sup>2</sup> = 99.91%, p = 0.00) | 23.50 (20.46, 26.67) 100.00    |
| Women                                        |                                |
| Bennie et al. 2016 +                         | 13.10 (12.20, 14.06) 7.65      |
| Bennie et al. 2017                           | 11.90 (11.56, 12.25) 7.72      |
| Bennie et al. 2021                           | 20.50 (19.82, 21.20) 7.70      |
| Bennie and Wiesner 2022                      | 12.90 (12.74, 13.07) 7.73      |
| CDC 2013 •                                   | 17.90 (17.79, 18.01) 7.73      |
| Chen et al. 2021 🔶                           | 10.20 (9.50, 10.95) 7.67       |
| Duijvestijn et al. 2020                      |                                |
| Lee et al. 2022                              | 9.91 (9.62, 10.21) 7.72        |
| Sandercock et al. 2022                       | 24.00 (23.78, 24.22) 7.73      |
| Sung et al. 2022                             | 9.28 (8.79, 9.78) 7.70         |
| Wennman and Borodulin, 2020                  | 29.51 (27.90, 31.17) 7.59      |
| Whitfield et al. 2019                        | 20.10 (19.39, 20.83) 7.69      |
| Zhao et al. 2020 🔶                           | 13.33 (13.20, 13.46) 7.73      |
| Subtotal (I <sup>2</sup> = 99.92%, p = 0.00) | 17.42 (14.73, 20.30) 100.0     |
|                                              |                                |
| 0 20                                         | 40 60                          |

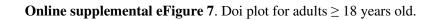
**Online supplemental eFigure 2**. Forest plot of adherence to aerobic and muscle-strengthening activities guidelines by age.

| Oto alta                                     |            |          | D 4 (059) (0)        | %      |
|----------------------------------------------|------------|----------|----------------------|--------|
| Study                                        |            |          | Prevalence (95% CI)  | Weigh  |
| Adults 18-64 years                           |            |          |                      |        |
| Bennie et al. 2016                           | <b>~</b>   |          | 19.86 (18.69, 21.09) | 7.69   |
| Bennie et al. 2017                           | •          |          | 18.00 (17.54, 18.48) | 7.74   |
| Bennie et al. 2021                           | +          |          | 24.75 (23.88, 25.64) | 7.73   |
| Bennie and Wiesner 2022                      | •          |          | 21.06 (20.81, 21.31) | 7.75   |
| Duijvestijn et al. 2020                      |            | +        | 50.10 (49.16, 51.04) | 7.73   |
| Lackinger and Dorner, 2015                   |            | <b>—</b> | 39.40 (35.07, 43.90) | 7.24   |
| Lee et al. 2022                              | •          |          | 18.70 (18.23, 19.18) | 7.74   |
| Sung et al. 2022                             | ◆          |          | 16.23 (15.65, 16.82) | 7.74   |
| Zhao et al. 2020                             | •          |          | 22.65 (22.46, 22.84) | 7.75   |
| Bennie et al. 2016                           | <b>~</b>   |          | 12.71 (11.58, 13.93) | 7.67   |
| Bennie et al. 2017                           | •          |          | 8.55 (8.20, 8.92)    | 7.74   |
| Bennie et al. 2021                           | +          |          | 21.90 (21.06, 22.77) | 7.72   |
| Bennie and Wiesner 2022                      | •          |          | 12.80 (12.60, 13.01) | 7.75   |
| Subtotal (I <sup>2</sup> = 99.90%, p = 0.00) | $\diamond$ |          | 21.21 (17.45, 25.22) | 100.00 |
| Older adults >64 years                       |            |          |                      |        |
| Bennie et al. 2016                           | +          |          | 6.18 (5.23, 7.29)    | 14.30  |
| Bennie et al. 2017                           | •          |          | 4.80 (4.47, 5.15)    | 14.41  |
| Bennie et al. 2021                           | +          |          | 20.20 (19.19, 21.25) | 14.38  |
| Bennie and Wiesner 2022                      | •          |          | 9.10 (8.90, 9.31)    | 14.42  |
| Duijvestijn et al. 2020                      |            | <b></b>  | 36.99 (35.39, 38.62) | 14.35  |
| Sung et al. 2022                             | <b>+</b>   |          | 6.29 (5.58, 7.07)    | 14.36  |
| Wennman and Borodulin, 2020                  | <b></b>    |          | 23.06 (19.13, 27.51) | 13.78  |
| Subtotal (l <sup>2</sup> = 99.79%, p = 0.00) | $\sim$     |          | 13.63 (8.18, 20.20)  | 100.00 |
|                                              |            |          |                      |        |
| <br> <br>                                    | 20         | 1<br>40  | 1<br>60              |        |

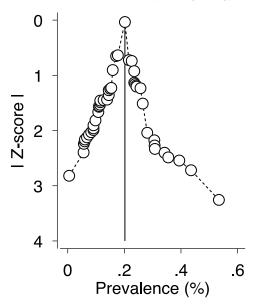
**Online supplemental eFigure 3**. Forest plot of adherence to aerobic and musclestrengthening activities guidelines by weight status.

| Study                                        | Prevalence (95% CI)  | %<br>Weight |
|----------------------------------------------|----------------------|-------------|
| Jnderweight                                  |                      |             |
| Bennie et al. 2016                           | 8.26 (4.55, 14.55)   | 13.74       |
| Bennie et al. 2021                           | 18.60 (15.21, 22.55) | 24.12       |
| Bennie and Wiesner 2022 +                    | 11.70 (11.08, 12.35) | 33.67       |
| Sung et al. 2022                             | 11.49 (9.55, 13.75)  | 28.47       |
| Subtotal (I <sup>2</sup> = 82.72%, p = 0.00) | 12.62 (9.92, 15.60)  | 100.00      |
| Normalweight                                 |                      |             |
| Bennie et al. 2016                           | 20.51 (19.04, 22.07) | 18.47       |
| Bennie et al. 2021                           | 27.20 (26.37, 28.06) | 20.06       |
| Bennie and Wiesner 2022                      | 18.60 (18.38, 18.82) | 20.62       |
| Sung et al. 2022 🔶                           | 15.08 (14.50, 15.67) | 20.21       |
| Thao et al. 2020                             | 18.80 (18.62, 18.97) | 20.64       |
| Subtotal (I <sup>2</sup> = 99.31%, p = 0.00) | 19.87 (17.93, 21.87) | 100.00      |
| Dverweight                                   |                      |             |
| Sennie et al. 2016                           | 15.80 (14.52, 17.18) | 13.84       |
| ennie et al. 2017                            | 9.00 (8.64, 9.37)    | 14.40       |
| ennie et al. 2021 -                          | 21.90 (21.00, 22.83) | 14.24       |
| ennie and Wiesner 2022                       | 13.40 (13.19, 13.61) | 14.46       |
| ee et al. 2022 •                             | 15.00 (14.53, 15.47) | 14.39       |
| ung et al. 2022 🔶                            | 14.56 (13.74, 15.41) | 14.20       |
| hao et al. 2020 ♦                            | 16.58 (16.40, 16.76) | 14.47       |
| Subtotal (I <sup>2</sup> = 99.62%, p = 0.00) | 14.98 (12.76, 17.35) | 100.00      |
| Desity                                       |                      |             |
| ennie et al. 2016 🔶                          | 9.71 (8.55, 11.02)   | 13.88       |
| ennie et al. 2017 $iglet$                    | 4.40 (4.04, 4.79)    | 14.61       |
| ennie et al. 2021 🔶                          | 13.00 (11.97, 14.10) | 14.26       |
| ennie and Wiesner 2022                       | 9.10 (8.84, 9.37)    | 14.75       |
| ee et al. 2022 🔶                             | 12.48 (11.56, 13.46) | 14.35       |
| ung et al. 2022                              | 10.61 (9.08, 12.35)  | 13.38       |
| hao et al. 2020 🔶                            | 10.62 (10.45, 10.79) | 14.78       |
| Subtotal (l <sup>2</sup> = 99.16%, p = 0.00) | 9.77 (7.98, 11.71)   | 100.00      |
|                                              |                      |             |
| I I<br>0 20                                  | I<br>40              |             |

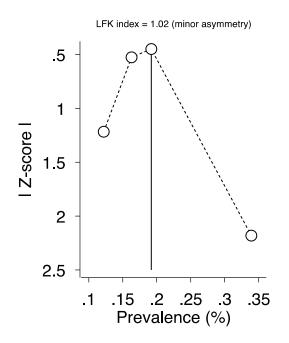
## **Online supplemental eFigure 4**. Forest plot of adherence to aerobic and musclestrengthening activities guidelines by education level.


| Study                                        | Prevalence (95% CI)    | %<br>Weigh |
|----------------------------------------------|------------------------|------------|
|                                              | · · ·                  |            |
| Low<br>Bennie et al. 2016                    | 8.49 (7.48, 9.63)      | 16.55      |
| Bennie et al. 2017                           | 2.75 (2.48, 3.06)      | 16.70      |
| Bennie and Wiesner 2022                      | 3.20 (3.03, 3.37)      | 16.73      |
| Duijvestijn et al. 2020                      | → 34.31 (32.87, 35.78) | 16.62      |
| Sung et al. 2022                             | 5.88 (5.35, 6.45)      | 16.67      |
| Zhao et al. 2020                             | 5.54 (5.39, 5.70)      | 16.73      |
|                                              |                        |            |
| Subtotal (I <sup>2</sup> = 99.85%, p = 0.00) | 8.26 (4.63, 12.80)     | 100.00     |
| Medium                                       |                        |            |
| Bennie et al. 2016 +                         | 15.39 (14.35, 16.50)   | 16.60      |
| Bennie et al. 2017                           | 10.95 (10.61, 11.30)   | 16.70      |
| Bennie and Wiesner 2022                      | 17.55 (17.38, 17.72)   | 16.71      |
| Duijvestijn et al. 2020                      |                        | 16.63      |
| Sung et al. 2022                             | 23.67 (22.73, 24.64)   | 16.65      |
| Zhao et al. 2020                             | 10.43 (10.27, 10.60)   | 16.71      |
| Subtotal (I <sup>2</sup> = 99.93%, p = 0.00) | > 19.56 (14.23, 25.50) | 100.00     |
| High                                         |                        |            |
| Bennie et al. 2016                           | 20.50 (18.93, 22.17)   | 16.52      |
| Bennie et al. 2017 •                         | 16.40 (15.87, 16.94)   | 16.71      |
| Bennie and Wiesner 2022                      | 22.10 (21.59, 22.62)   | 16.72      |
| Duijvestijn et al. 2020                      | ➡ 56.49 (55.18, 57.80) | 16.64      |
| Sung et al. 2022                             | ✤ 25.25 (24.35, 26.16) | 16.68      |
| Zhao et al. 2020                             | 22.31 (22.15, 22.47)   | 16.74      |
| Subtotal (I <sup>2</sup> = 99.85%, p = 0.00) | 26.50 (20.53, 32.95)   | 100.00     |
|                                              | -                      |            |
| I I<br>0 20                                  | 1 1<br>40 60           |            |

**Online supplemental eFigure 5**. Forest plot of adherence to aerobic and musclestrengthening activities guidelines by smoking status.


|                                              |              |                      | %      |
|----------------------------------------------|--------------|----------------------|--------|
| Study                                        |              | Prevalence (95% CI)  | Weight |
| Current smoke                                |              |                      |        |
| Bennie et al. 2016                           | <b></b>      | 10.08 (8.77, 11.57)  | 19.27  |
| Bennie et al. 2021                           | <b>~</b>     | 18.40 (17.39, 19.46) | 20.05  |
| Lee et al. 2022                              | +            | 16.31 (15.70, 16.93) | 20.30  |
| Sung et al. 2022                             | <del>~</del> | 15.44 (14.38, 16.57) | 19.94  |
| Zhao et al. 2020                             | •            | 11.79 (11.60, 11.99) | 20.44  |
| Subtotal (I <sup>2</sup> = 98.98%, p = 0.00) | $\diamond$   | 14.30 (11.48, 17.36) | 100.00 |
| Former/non-smokers                           |              |                      |        |
| Bennie et al. 2016                           | <b>~</b>     | 16.20 (15.39, 17.04) | 19.71  |
| Bennie et al. 2021                           | +            | 23.90 (23.29, 24.52) | 19.99  |
| Lee et al. 2022                              | •            | 14.10 (13.83, 14.37) | 20.13  |
| Sung et al. 2022                             | +            | 15.54 (15.04, 16.06) | 20.00  |
| Zhao et al. 2020                             | •            | 17.03 (16.91, 17.15) | 20.18  |
|                                              |              |                      |        |

**Online supplemental eFigure 6**. Forest plot of adherence to aerobic and musclestrengthening activities guidelines by self-rated health status.


| Study                                        |            |    |   | Prevalence (95% CI)  | %<br>Weight |
|----------------------------------------------|------------|----|---|----------------------|-------------|
| Very poor/Poor                               |            |    |   |                      |             |
| Bennie et al. 2016                           | <b>—</b>   |    |   | 5.24 (3.57, 7.62)    | 18.94       |
| Bennie et al. 2017                           | •          |    |   | 4.01 (3.56, 4.51)    | 28.30       |
| Bennie et al. 2021                           | -+         |    |   | 8.68 (7.13, 10.51)   | 23.61       |
| Bennie and Wiesner 2022                      | •          |    |   | 3.60 (3.38, 3.83)    | 29.15       |
| Subtotal (I <sup>2</sup> = 94.25%, p = 0.00) | $\diamond$ |    |   | 5.06 (3.72, 6.59)    | 100.00      |
| Fair/moderate                                |            |    |   |                      |             |
| Bennie et al. 2016                           | <b>-</b>   |    |   | 5.42 (4.26, 6.87)    | 24.38       |
| Bennie et al. 2017                           | •          |    |   | 4.20 (3.91, 4.51)    | 25.23       |
| Bennie et al. 2021                           |            | +  |   | 16.10 (15.16, 17.09) | 25.10       |
| Bennie and Wiesner 2022                      | •          |    |   | 8.90 (8.69, 9.11)    | 25.28       |
| Subtotal (I <sup>2</sup> = 99.66%, p = 0.00) | $\diamond$ |    |   | 8.16 (4.55, 12.69)   | 100.00      |
| Very good/Good/Excelent                      |            |    |   |                      |             |
| Bennie et al. 2016                           |            | +  |   | 18.14 (17.29, 19.01) | 24.84       |
| Bennie et al. 2017                           |            | •  |   | 16.05 (15.69, 16.41) | 25.06       |
| Bennie et al. 2021                           |            |    | + | 29.35 (28.66, 30.06) | 24.99       |
| Bennie and Wiesner 2022                      |            | ٠  |   | 19.55 (19.37, 19.73) | 25.11       |
| Subtotal (I <sup>2</sup> = 99.75%, p = 0.00) |            | <> |   | 20.56 (16.47, 24.99) | 100.00      |



LFK index = -1.20 (minor asymmetry)



# Online supplemental eFigure 8. Doi plot for adolescents aged 12-17 years old.

